Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis.
نویسندگان
چکیده
The oxysterol receptors LXR (liver X receptor)-alpha and LXRbeta are nuclear receptors that play a key role in regulation of cholesterol and fatty acid metabolism. We found that LXRs also play a significant role in glucose metabolism. Treatment of diabetic rodents with the LXR agonist, T0901317, resulted in dramatic reduction of plasma glucose. In insulin-resistant Zucker (fa/fa) rats, T0901317 significantly improved insulin sensitivity. Activation of LXR did not induce robust adipogenesis but rather inhibited the expression of several genes involved in hepatic gluconeogenesis, including phosphoenolpyruvate carboxykinase (PEPCK). Hepatic glucose output was dramatically reduced as a result of this regulation. Nuclear run-on studies indicated that transcriptional repression was primarily responsible for the inhibition of PEPCK by the LXR agonist. In addition, we show that the regulation of the liver gluconeogenic pathway by LXR agonists was a direct effect on hepatocytes. These data not only suggest that LXRs are novel targets for diabetes but also reveal an unanticipated role for these receptors, further linking lipid and glucose metabolism.
منابع مشابه
Metformin-carbonic anhydrase interaction facilitate lactate accumulation in type 2 diabetes
Metformin has emerged as the most widely prescribed antidiabetic medication for the management of type 2 diabetes. Among the widely accepted mode of its action, is reduction of hepatic glucose production. The risk of lactic acidosis is common with metformin usage. Recent data revealed that Metformin, in addition to its glucose reduction action, might be responsible for specifically inducing lac...
متن کاملInsulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associated with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation.
BACKGROUND/AIM Liver X receptors (LXRs) are ligand-activated transcription factors that were shown to stimulate hepatic lipogenesis leading to liver steatosis and hypertriglyceridemia. Despite their pro-lipogenic action, LXR activators normalize glycemia and improve insulin sensitivity in rodent models of type 2 diabetes. Antidiabetic action of LXR agonists is thought to result from suppression...
متن کاملInverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related...
متن کاملActivation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway
Activation of Liver X receptors (LXRs), key transcriptional regulators of glucose metabolism, normalizes glycemia and improves insulin sensitivity in rodent models with insulin resistance. However, the molecular mechanism is unclear. This study is aimed to elucidate the mechanism of LXRs-mediated liver glucose metabolic regulation in vitro and in vivo. Db/db mice were used as an in vivo model o...
متن کاملM. Baranowski Biological Role of Liver X Receptors
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. There are two LXR isoforms termed α and ß which upon activation form heterodimers with retinoid X receptor and bind to LXR response element found in the promoter region of the target genes. Their endogenous agonists include a variety of oxidized cholesterol derivatives referred to as oxyster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 2 شماره
صفحات -
تاریخ انتشار 2003